

FLUOSTAR® Rhodamine B-"encapsulating" microspheres are seeding particles optimized for Particle Image Velocimetry

Technical handbook ver.1, Feb, 2010

CONTENTS

- 1) Introduction of fluorescent PIV (fPIV)
- 2) Advantage of FLUOSTAR® microsphere
- 3) Application examples: 3D Stereo PIV/ Time-resolved PIV

1) Introduction of Fluorescent PIV(fPIV): Overview

Fluorescent PIV (fPIV) is a hands-on advanced PIV liquid measurement using fluorescence-emitting particles rather than conventional non-fluorescent ones, such as glass spheres. When fluorescent particles are illuminated by a light source (Laser, LED etc.), particles emits fluorescence with a different wavelength (or, color) from that of the light source. By using an **optical filter**, users can "selectively" obtain fluorescent particle images without any optical disturbance from the light source, This document explains fPIV and its optimal seeding particles, FLUOSTAR®. Users no longer suffer from undesired reflective light. Excellent signal-to-noise ratio can be achieved by using fluorescence, or changing the color.

	Conventional PIV (Non-fluorescent PIV)	Fluorescent PIV
Seeding particles	PolystyreneGlass spheres (GS)Metal-coated hollow GS etc.	Fluorescent particles (FLUOSTAR®)
Particle visibility	Scattering light	Fluorescent emission
Wavelength	Same as light source	Longer than light source
Light source ^{*1}	Laser / LED	Laser / LED
Camera	CCD (CMOS) sensor	CCD (CMOS) sensor
Optical filter [*] 2	No	Yes

^{★1} We assume a green laser or LED is a typical light source for modern PIV.

^{*2} A standard longpass filter is necessary for fPIV. In the case of FLUOSTAR ®, the filter should have a sharp cutoff wavelength at 550nm. Upon request, EBM Corp. recommends a suitable filter and attachment (see p3).

1) Introduction of Fluorescent PIV(fPIV): illustration

For clarity, FLUOSTAR® images were taken <u>by a color CCD sensor</u>.

Particles were seeded in water within a Perspex-made container and illuminated by a Nd:YLF laser (527nm)

1) Introduction of Fluorescent PIV(fPIV): applications

Bubbly flow meas.

Hardware setup

- Nd:YLF laser (527nm, Photonics Industries)
- 5 mJ-energy high-rep. pulsed green laser
- Standard CMOS camera, Fastcam 1024 (Photron)
- 1Kfps time-resolved measurement

Non-fluorescent particles

FLUOSTAR® microspheres

Near-wall flow meas.

Similar as above

Excellent particle visibility!

FLUOSTAR® microspheres

2) Advantage of FLUOSTAR® microsphere

Shape	Sphere
Density	1.1 g/cm ³
Mean size	15 μm
Size distribution	Less than 20% in C.V. **1
Fluorescent emission	Excellent brightness (P6)
Water dispersibility	Excellent (P7, 8)
Water stability (heating, durability)	Excellent (P9, 10)
Particle supply	Dry powder

Microscope image (×10)

*1 C.V. denotes coefficient of variation, (standard deviation divided by mean diameter)

2) FLUOSTAR® technique: excellent brightness

Particle conditions:

FLUOSTAR® was compared in brightness with a sample fluorescent particle commercially available. Particle concentration was **5 mg / litter** for both in fresh water. The size of each particle was similar in mean diameter (15 μm).

2) FLUOSTAR® technique: Water dispersibility

FLUOSTAR® is hydrophilic, or wettable, particles!!!

Movie available http://ebm.vc/news/107?category=info_e

2) FLUOSTAR® technique: Comparison of water dispersibility

Hollow glass and silver-coated HG particles were mixed in water and then stirred in a mixing device. Despite that, these particles still formed aggregations . In contrast, Fluostar does not make aggregations even without stirring because of prominent wettability.

No more aggregation and adhesion

2) FLUOSTAR® technique: Water stability

Water at 25°C

Heated in boiling water (100°C, 1 h)

Excellent durability for heating

2) FLUOSTAR® technique : Durability test

Particle conditions:

FLUOSTAR® was preserved in refrigerator as suspended in water for a period of **two** months. Then, the old particles were compared in brightness in contrast to fresh ones with the same particle density using fresh water for both.

3) FLUOSTAR® application: vascular flow modeling

Cerebral aneurysm model

FLUOSTAR®

Non-fluorescent particles

Movie available http://ebm.vc/news/107?category=info_e

11/13

2) FLUOSTAR® application: 2D time-resolved PIV

Standard PIV processing using original images (no image enhancement)

3) FLUOSTAR® application: 3D Stereo PIV

Raw image at f#=16

Movie available http://ebm.vc/news/107?category=info_e

Interrogation size :(16×16pixel²)
Spatial resolution: 110 µm

Laser light thickness: 80~100µm

Overlap: 50%(55µm) Scanning plane: 80

13/13